Indian Statistical Institute, Bangalore

B. Math (Hons.) Third Year Second Semester - Analysis IV

Semestral Exam Maximum marks: 50 Date: May 04, 2018 Duration: 3 hours

Section I: Answer any four, each question carries 6 marks

- 1. If X is a compact metric space and \mathcal{A} is a closed subalgebra of $C_{\mathbb{R}}(X)$ that separates points of X, prove that either \mathcal{A} nowhere vanishes or there is a $x_0 \in X$ such that $\mathcal{A} = \{f \in C_{\mathbb{R}}(X) \mid f(x_0) = 0\}.$
- 2. Let \mathcal{A} be an algebra of real-valued continuous functions on a compact metric space. Let $f \in \mathcal{A}$. Prove that $|f| \in \overline{\mathcal{A}}$. Can $|f| \in \mathcal{A}$? Justify your answer.
- 3. Discuss Implicit Function Theorem for F at (2, -1, 2, 1) where $F: \mathbb{R}^{2+2} \to \mathbb{R}^2$ is given by $F(x, y, u, v) = (x^2 y^2 u^3 + v^2 + 4, 2xy + y^2 2u^2 + 3v^4 + 8).$
- 4. Prove (the three identities in) Parseval's Theorem.
- 5. Prove that series converges $\sum_{k=1}^{\infty} \frac{2}{(2k-1)\pi} \sin(2k-1)x$ to $\frac{1}{2}$ for all $x \in (0,\pi)$.
- 6. Find total variation of $f(x) = x^3 2x^2 + x + 2$ and $g(x) = x^3 4x + 5$ on [0, 1].

Section II: Answer any two, each question carries 13 marks

- (a) Let E ⊂ ℝⁿ be open and f: E → ℝⁿ be a C¹-map with f'(x) being invertible. Prove that there is neighborhood U of x such that f(U) is open in ℝⁿ.
 (b) Let A_I be set of all polynomials of degree 4 with coefficients from I ⊂ ℝ. Prove that A_I is compact in C[0, 1] if and only if I is bounded (Marks: 7).
- 2. (a) Let $f \in \mathcal{R}[-\pi,\pi]$ be a 2π -periodic function and $s_n(x)$ be the *n*-th partial sum of the Fourier series of f at $x \in \mathbb{R}$. If $s(x) = \lim_{t \to 0} \frac{f(x+t)+f(x-t)}{2}$ exists for $x \in [-\pi,\pi]$, prove that $\sigma_n(x) = \frac{1}{n} \sum_{i=0}^{n-1} s_i(x) \to s(x)$.

(b) Using Fourier series prove that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$ (Marks: 6).

3. (a) Prove that Fourier series of any 2π -periodic bounded function that is monotonic in $[-\pi, \pi)$ converges (Marks: 4).

(b) Prove that Fourier series of any 2π -periodic function that is monotonic in $(a, b) \subset (-\pi, \pi)$ and Riemann integrable over $[-\pi, \pi]$ converges (Marks: 3).

(c) If f is differentiable such that $f' \in \mathcal{R}[-\pi,\pi]$ and $\frac{1}{2\pi} \int_{-\pi}^{\pi} |f'(t)|^2 dt \leq 1$. Prove that $|f(x) - s_n(x)| \leq \frac{2}{\sqrt{n}}$ for all $x \in \mathbb{R}$ and $n \geq 1$.